A kurtosis-based dynamic approach to Gaussian mixture modeling

نویسندگان

  • Nikos A. Vlassis
  • Aristidis Likas
چکیده

We address the problem of probability density function estimation using a Gaussian mixture model updated with the expectationmaximization (EM) algorithm. To deal with the case of an unknown number of mixing kernels, we define a new measure for Gaussian mixtures, called total kurtosis, which is based on the weighted sample kurtoses of the kernels. This measure provides an indication of how well the Gaussian mixture fits the data. Then we propose a new dynamic algorithm for Gaussian mixture density estimation which monitors the total kurtosis at each step of the EM algorithm in order to decide dynamically on the correct number of kernels and possibly escape from local maxima. We show the potential of our technique in approximating unknown densities through a series of examples with several density estimation problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vlassis and Likas : a Kurtosis - Based Dynamic Approach to Gaussian Mixture Modeling

| We address the problem of probability density function estimation using a Gaussian mixture model updated with the EM algorithm. To deal with the case of an unknown number of mixing kernels, we deene a new measure for Gaussian mixtures, called total kurtosis, which is based on the weighted sample kurtoses of the kernels. This measure provides an indication of how well the Gaussian mixture ts t...

متن کامل

Vlassis and Likas : a Kurtosis - Based Dynamic Approach to Gaussian Mixture Modeling 3

| We address the problem of probability density function estimation using a Gaussian mixture model updated with the expectation-maximization (EM) algorithm. To deal with the case of an unknown number of mixing kernels , we deene a new measure for Gaussian mixtures, called total kurtosis, which is based on the weighted sample kur-toses of the kernels. This measure provides an indication of how w...

متن کامل

Evaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data

Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...

متن کامل

A two-stage approach using Gaussian mixture models and higher-order statistics for a classification of normal and pathological voices

A two-stage classifier is used to improve the classification performance between normal and pathological voices. A primary classification between normal and pathological voices is achieved by the Gaussian mixture model (GMM) log-likelihood scores. For samples that do not meet the thresholds for normal or disordered voice in the GMM, the final decision is made by a higher-order statistics (HOS)-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics, Part A

دوره 29  شماره 

صفحات  -

تاریخ انتشار 1999